Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38341032

RESUMEN

INTRODUCTION: One of the hallmarks of Parkinsons Disease (PD) is oxidative distress, leading to mitochondrial dysfunction and neurodegeneration. Insulin-like growth factor II (IGF-II) has been proven to have antioxidant and neuroprotective effects in some neurodegenerative diseases, including PD. Consequently, there isgrowing interest in understanding the different mechanisms involved in the neuroprotective effect of this hormone. OBJECTIVES: To clarify the mechanism of action of IGF-II involved in the protective effect of this hormone. METHODS: The present study was carried out on a cellular model PD based on the incubation of dopaminergic cells (SN4741) in a culture with the toxic 1-methyl-4-phenylpyridinium (MPP+), in the presence of IGF-II. This model undertakes proteomic analyses in order to understand which molecular cell pathways might be involved in the neuroprotective effect of IGF-II. The most important proteins found in the proteomic study were tested by Western blot, colorimetric enzymatic activity assay and immunocytochemistry. Along with the proteomic study, mitochondrial morphology and function were also studied by transmission electron microscopy and oxygen consumption rate. The cell cycle was also analysed using 7AAd/BrdU staining, and flow cytometry. RESULTS: The results obtained indicate that MPP+, MPP++IGF-II treatment and IGF-II, when compared to control, modified the expression of 197, 246 proteins and 207 respectively. Some of these proteins were found to be involved in mitochondrial structure and function, and cell cycle regulation. Including IGF-II in the incubation medium prevents the cell damage induced by MPP+, recovering mitochondrial function and cell cycle dysregulation, and thereby decreasing apoptosis. CONCLUSION: IGF-II improves mitochondrial dynamics by promoting the association of Mitofilin with mitochondria, regaining function and redox homeostasis. It also rebalances the cell cycle, reducing the amount of apoptosis and cell death by the regulation of transcription factors, such as Checkpoint kinase 1.

2.
Front Physiol ; 14: 1268766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881694

RESUMEN

Research institutes and universities have strengthened the development of biomedicine outreach activities, constituing a non-formal education system of science literacy, although with little commitment from undergraduate students. However, as a Service-Learning methodology, these outreach activities could work as a tool for the acquisition of skills by students of Health Science Degrees. Described here is the development of the workshop entitled "Exploring the human body" at the Biodonostia Health Research Institute and the pilot experience of its implementation as a Service-Learning activity at the University of Málaga. Firstly, 359 secondary education students were mentored by Ph.D. students through a 5-station workshop with experiments and activities related to the physiology of the human body. Then, 301 undergraduate students of Medicine and Nursing Degrees advised 965 secondary education students. Both groups of students assessed the workshop via questionnaires and a debriefing. The data showed an overall score of 4.6 out of 5 for the workshop. Undergraduate students reported a positive impact on their academic background (4.8 out of 5), mainly due to the improvement of oral communication skills (34%). Therefore, this methodology could be a valid and applicable tool to develop the cross-disciplinary competences of undergraduate students.

3.
Brain ; 146(12): 4949-4963, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37403195

RESUMEN

Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Ratas , Animales , alfa-Sinucleína/metabolismo , Levodopa/farmacología , Pramipexol/farmacología , Hipocampo/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neurotransmisores/metabolismo , Cognición
4.
Brain ; 145(6): 2092-2107, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35245368

RESUMEN

Synaptic impairment might precede neuronal degeneration in Parkinson's disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Autofagia , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Metabolismo Energético , Trastornos Parkinsonianos/metabolismo , Ratas , alfa-Sinucleína/metabolismo
5.
Neurobiol Dis ; 167: 105669, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219857

RESUMEN

Dopaminergic denervation in patients with Parkinson's disease is associated with changes in brain metabolism. Cerebral in-vivo mapping of glucose metabolism has been studied in severe stable parkinsonian monkeys, but data on brain metabolic changes in early stages of dopaminergic depletion of this model is lacking. Here, we report cerebral metabolic changes associated with progressive nigrostriatal lesion in the pre-symptomatic and symptomatic stages of the progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson's Disease. Monkeys (Macaca fascicularis) received MPTP injections biweekly to induce progressive grades of dopamine depletion. Monkeys were sorted according to motor scale assessments in control, asymptomatic, recovered, mild, and severe parkinsonian groups. Dopaminergic depletion in the striatum and cerebral metabolic patterns across groups were studied in vivo by positron emission tomography (PET) using monoaminergic ([11C]-dihydrotetrabenazine; 11C-DTBZ) and metabolic (2-[18F]-fluoro-2-deoxy-d-glucose; 18F-FDG) radiotracers. 11C-DTBZ-PET analysis showed progressive decrease of binding potential values in the striatum of monkeys throughout MPTP administration and the development of parkinsonian signs. 18F-FDG analysis in asymptomatic and recovered animals showed significant hypometabolism in temporal and parietal areas of the cerebral cortex in association with moderate dopaminergic nigrostriatal depletion. Cortical hypometabolism extended to involve a larger area in mild parkinsonian monkeys, which also exhibited hypermetabolism in the globus pallidum pars interna and cerebellum. In severe parkinsonian monkeys, cortical hypometabolism extended further to lateral-frontal cortices and hypermetabolism also ensued in the thalamus and cerebellum. Unbiased histological quantification of neurons in Brodmann's area 7 in the parietal cortex did not reveal neuron loss in parkinsonian monkeys versus controls. Early dopaminergic nigrostriatal depletion is associated with cortical, mainly temporo-parietal hypometabolism unrelated to neuron loss. These findings, together with recent evidence from Parkinson's Disease patients, suggest that early cortical hypometabolism may be associated and driven by subcortical changes that need to be evaluated appropriately. Altogether, these findings could be relevant when potential disease modifying therapies become available.


Asunto(s)
Trastornos Parkinsonianos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Trastornos Parkinsonianos/metabolismo , Tomografía de Emisión de Positrones/métodos , Primates/metabolismo
6.
J Affect Disord ; 298(Pt A): 69-79, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715178

RESUMEN

BACKGROUND: Bipolar disorder (BD) is characterized by mood changes that implies alterations in reward sensitivity and frustration tolerance. This study examined the effects of monetary reward and frustration on attentional performance and on affective experience across mood states in BD. METHODS: An Affective Posner Task in which the nature of contingencies are divided in the three successive blocks (baseline condition, monetary reward and non-contingent feedback) was applied to BD individuals in their different episodes: mania (n = 30), depression (n = 30), and euthymia (n =  30) as well as to a group of healthy controls (n = 30). RESULTS: Monetary reward improved performance (in terms of faster response times) in the euthymic group and the control group, whereas it impaired performance in the manic group and has not significant effect in the depressed group. In addition, an increased interference of frustration on response accuracy was exhibited in the three groups of BD patients (including euthymia) compared with healthy controls. LIMITATIONS: Participants' affective experience was self-informed by a Likert scale, so the reliability of this measure can be undermined in symptomatic patients in terms of stability and objectivity. Although it was statistically controlled, at the time of testing, all BD patients were medicated. CONCLUSIONS: A dissociated effect of reward and frustration was found between symptomatic and euthymic states in BD: whereas the benefit from monetary reward is affected only during symptomatic episodes (i.e., a state), the notably increased interference of frustration is exhibited also during euthymia (i.e., a trait).


Asunto(s)
Trastorno Bipolar , Retroalimentación , Frustación , Humanos , Reproducibilidad de los Resultados , Recompensa
7.
Int J Neuropsychopharmacol ; 25(4): 307-318, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34891163

RESUMEN

BACKGROUND: Selective serotonergic reuptake inhibitors, including fluoxetine (FLX), are the most commonly used for the treatment of major depression. However, they are effective for remission in only 30% of patients. Recently, we observed that Galanin (1-15) [GAL(1-15)] enhanced the antidepressant effects of FLX in naïve animals, suggesting a new augmentation strategy in depression. METHODS: We have analyzed in an animal model of depression, the olfactory bulbectomy (OBX) rats, the effect of GAL(1-15) on FLX-mediated responses in the forced swimming test and the sucrose preference test and the involvement of GAL receptor 2 with its antagonist, M871. We have also studied the corticosterone levels in OBX after the coadministration of GAL(1-15) with FLX. Moreover, we studied whether the effects of GAL(1-15) on FLX actions were mediated via auto- and heteroreceptor 5-HT1A (5-HT1AR), analyzing the binding characteristics, mRNA levels, and functionality of 5-HT1AR in the dorsal hippocampus. RESULTS: GAL(1-15) enhances the antidepressant-like effects induced by FLX in OBX animals in the forced swimming test and the sucrose preference test. The involvement of the GALR2 was demonstrated with M871. Importantly, the mechanism underlying the GAL(1-15)/FLX interactions in the OBX animals involves the 5-HT1AR in the hippocampus at the plasma membrane (increase of affinity and density of 5HT1AR in the DG) and transcriptional (increase of 5HT1AR mRNA levels in DG and CA1) levels. Besides, the coadministration of GAL(1-15) and FLX also reduced OBX-increased corticosterone levels. CONCLUSIONS: The results open the possibility to use GAL(1-15) in combination with FLX as a novel strategy for the treatment of depression.


Asunto(s)
Depresión , Fluoxetina , Animales , Antidepresivos/farmacología , Corticosterona , Depresión/tratamiento farmacológico , Depresión/metabolismo , Fluoxetina/farmacología , Galanina/farmacología , Humanos , Fragmentos de Péptidos , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Sacarosa
8.
Cells ; 11(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011592

RESUMEN

Long-term exposition to morphine elicits structural and synaptic plasticity in reward-related regions of the brain, playing a critical role in addiction. However, morphine-induced neuroadaptations in the dorsal striatum have been poorly studied despite its key function in drug-related habit learning. Here, we show that prolonged treatment with morphine triggered the retraction of the dendritic arbor and the loss of dendritic spines in the dorsal striatal projection neurons (MSNs). In an attempt to extend previous findings, we also explored whether the dopamine D4 receptor (D4R) could modulate striatal morphine-induced plasticity. The combined treatment of morphine with the D4R agonist PD168,077 produced an expansion of the MSNs dendritic arbors and restored dendritic spine density. At the electrophysiological level, PD168,077 in combination with morphine altered the electrical properties of the MSNs and decreased their excitability. Finally, results from the sustantia nigra showed that PD168,077 counteracted morphine-induced upregulation of µ opioid receptors (MOR) in striatonigral projections and downregulation of G protein-gated inward rectifier K+ channels (GIRK1 and GIRK2) in dopaminergic cells. The present results highlight the key function of D4R modulating morphine-induced plasticity in the dorsal striatum. Thus, D4R could represent a valuable pharmacological target for the safety use of morphine in pain management.


Asunto(s)
Cuerpo Estriado/fisiología , Morfina/farmacología , Plasticidad Neuronal/fisiología , Receptores de Dopamina D4/metabolismo , Animales , Benzamidas/farmacología , Cuerpo Estriado/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Masculino , Morfina/administración & dosificación , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Piperazinas/farmacología , Ratas Sprague-Dawley , Receptores de Dopamina D4/agonistas , Receptores Opioides mu/metabolismo
9.
Psychopharmacology (Berl) ; 237(8): 2433-2434, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32617648

RESUMEN

In the original version of this article, the Figure 3 was published in an incorrect format, even though the data and the related information in the text are correct.

10.
Psychopharmacology (Berl) ; 237(8): 2419-2431, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32440779

RESUMEN

RATIONALE: Impulse control disorders (ICD) and other impulsive-compulsive behaviours are frequently found in Parkinson's disease (PD) patients treated with dopaminergic agonists. To date, there are no available animal models to investigate their pathophysiology and determine whether they can be elicited by varying doses of dopaminergic drugs. In addition, there is some controversy regarding the predispositional pattern of striatal dopaminergic depletion. OBJECTIVES: To study the effect of two doses of pramipexole (PPX) on motor impulsivity, delay intolerance and compulsive-like behaviour. METHODS: Male rats with mild dopaminergic denervation in the dorsolateral striatum (bilateral injections of 6-hydroxidopamine (6-OHDA)) treated with two doses of PPX (0.25 mg/kg and 3 mg/kg) and tested in the variable delay-to-signal paradigm. RESULTS: Partial (50%) dopaminergic depletion did not induce significant changes in motor impulsivity or delay intolerance. However, 0.25 mg/kg of PPX increased motor impulsivity, while 3 mg/kg of PPX increased both motor impulsivity and delay intolerance. These effects were independent of the drug's antiparkinsonian effects. Importantly, impulsivity scores before and after dopaminergic lesion were positively associated with the impulsivity observed after administering 3 mg/kg of PPX. No compulsive-like behaviour was induced by PPX administration. CONCLUSIONS: We described a rat model, with a moderate dorsolateral dopaminergic lesion resembling that suffered by patients with early PD, that develops different types of impulsivity in a dose-dependent manner dissociated from motor benefits when treated with PPX. This model recapitulates key features of abnormal impulsivity in PD and may be useful for deepening our understanding of the pathophysiology of ICD.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta/inducido químicamente , Agonistas de Dopamina/administración & dosificación , Conducta Impulsiva/efectos de los fármacos , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Pramipexol/administración & dosificación , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Trastornos Disruptivos, del Control de Impulso y de la Conducta/psicología , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Conducta Impulsiva/fisiología , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/psicología , Ratas , Ratas Sprague-Dawley
11.
Eur J Nucl Med Mol Imaging ; 47(11): 2602-2612, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32206840

RESUMEN

PURPOSE: To study the feasibility of the in vivo [18F]-DPA-714 TSPO positron emission tomography (PET) to detect glial activation in a rat model of progressive parkinsonism induced by viral-mediated overexpression of A53T mutated human α-synuclein (hα-syn) in the substantia nigra pars compacta (SNpc). METHODS: We conducted a cross-sectional study in a model of progressive parkinsonism. Bilateral intranigral injections with 2/9 adeno-associated viral vectors encoding either hα-syn (AAV-hα-syn) or green fluorescent protein (AAV-GFP) were performed in rats (n = 60). In vivo [18F]-DPA-714 PET imaging was performed at different time points after inoculation (p.i.) of the viral vector (24 and 72 h and 1, 2, 3, and 16 weeks). Images were analyzed to compute values of binding potential (BP) in the SNpc and striatum using a volume of interest (VOI) analysis. Immunohistochemistry of markers of dopaminergic degeneration (tyrosine hydroxylase (TH)), microglia (Iba-1), and astrocytes (GFAP) was carried out. Binding potential (BP) of [18F]-DPA-714 PET in the in vivo PET study was correlated with post-mortem histological markers. RESULTS: In the SNpc of AAV-hα-syn rats, there was higher in vivo [18F]-DPA-714 BP (p < 0.05) and increased number of post-mortem Iba-1+ cells (p < 0.05) from second week p.i. onwards, which were highly correlated (p < 0.05) between each other. These findings antedated the nigral reduction of TH+ cells that occurs since third week p.i. (p < 0.01). In addition, the [18F]-DPA-714 BP was inversely correlated (p < 0.05) with the TH+ cells. In contrast, GFAP+ cells only increased at 16 weeks p.i. and did not correlate with the in vivo results. In the striatum, no changes in the number of Iba-1+ and GFAP+ cells were observed, but an increment in the [18F]-DPA-714 BP was found at 16 weeks p.i. CONCLUSIONS: Our study showed that in vivo PET study with [18F]-DPA-714 is a selective and reliable biomarker of microglial activation and could be used to study preclinical stages of Parkinson's disease (PD) and to monitor the progression of the disease.


Asunto(s)
Microglía , Tomografía de Emisión de Positrones , Animales , Biomarcadores , Estudios Transversales , Modelos Animales de Enfermedad , Pirazoles , Pirimidinas , Ratas
12.
Neuropharmacology ; 155: 104-112, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31128121

RESUMEN

Galanin (1-15) [GAL(1-15)] participates in mood regulation and depression. GAL(1-15) is also able to enhance the antidepressant effects induced by Fluoxetine (FLX) in the forced swimming test through interaction between GALR1-GALR2 and 5-HT1A receptors that induced changes in the binding characteristics and mRNA of the 5-HT1AR in the hippocampus. Since the medial prefrontal cortex (mPFC) is a core region for the interaction between emotional processing and cognition with a high density of 5-HT1AR and GALR1 and GALR2, we have analyzed the binding characteristics and mRNA levels of 5-HT1AR in the mPFC after GAL(1-15)-FLX administration in the rats. GAL(1-15) increased the Kd and the Bmax of the 5HT1AR agonist binding in the mPFC as well as the mRNA levels of 5-HT1AR in mPFC. Moreover, GAL(1-15) reversed the effects of memory impairment induced by FLX(10 mg/kg) in the Novel Object Recognition task. GALR2 was involved in these effects, since the specific GALR2 antagonist M871 blocked GAL(1-15) mediated actions at behavioral level. On the contrary GAL(1-15) did not reverse the effect of FLX in the Object Location Memory task. In conclusion, our results describe an interactions between GAL(1-15) and FLX in the mPFC involving interactions at the 5-HT1AR receptor level in the plasma membrane with changes at the transcriptional level with implications also at functional level. The GALR1-GALR2-5-HT1A heteroreceptor could be postulated to be used to reverse some of the adverse effects of FLX on memory processes.


Asunto(s)
Fluoxetina/metabolismo , Galanina/metabolismo , Fragmentos de Péptidos/metabolismo , Corteza Prefrontal/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Animales , Interacciones Farmacológicas/fisiología , Fluoxetina/toxicidad , Galanina/farmacología , Galanina/uso terapéutico , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Neuropéptidos/uso terapéutico , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/uso terapéutico , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad
13.
J Psychopharmacol ; 33(6): 737-747, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31081442

RESUMEN

BACKGROUND: Anhedonia is a core feature of depressive disorders. The galanin N-terminal fragment (1-15) plays a role in mood regulation since it induces depression and anxiogenic-like effects in rats. In this study, we analysed galanin N-terminal fragment (1-15) actions in anhedonic-like behaviours in rats using operant and non-operant tests and the areas involved with these effects. METHODS: Galanin N-terminal fragment (1-15) effects were analysed in saccharin self-administration, sucrose preference, novelty-suppressed feeding and female urine sniffing tests. The areas involved in galanin N-terminal fragment (1-15)-mediated effects were studied with positron emission tomography for in vivo imaging, and we analysed the ventral tegmental area and nucleus accumbens. Galanin N-terminal fragment (1-15) had effects on the mRNA expression of the dopamine transporters Dat and Vmat2; the C-Fos gene; the dopamine receptors D1, D2, D3, D5; and the galanin receptors 1 and 2. RESULTS: Galanin N-terminal fragment (1-15) at a concentration of 3 nmol induced a strong anhedonia-like phenotype in all tests. The involvement of galanin receptor 2 was demonstrated with the galanin receptor 2 antagonist M871 (3 nmol). The 18F-fluorodeoxyglucose positron emission tomography images indicated the action of galanin N-terminal fragment (1-15) over several nuclei of the limbic system. Galanin N-terminal fragment (1-15)-mediated effects also involved changes in the expression of Dat, Vmat2, D3 and galanin receptors in the ventral tegmental area as well as the expression of C-Fos, D1, D2 and D3 and TH immunoreactivity in the nucleus accumbens. CONCLUSIONS: Our results indicated that galanin N-terminal fragment (1-15) exerts strong anhedonic-like effects and that this effect was accompanied by changes in the dopaminergic mesolimbic system. These results may provide a basis for the development of novel therapeutic strategies using galanin N-terminal fragment (1-15) analogues for the treatment of depression and reward-related diseases.


Asunto(s)
Anhedonia/fisiología , Dopamina/metabolismo , Galanina/metabolismo , Receptores Dopaminérgicos/metabolismo , Animales , Conducta Animal/fisiología , Depresión/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Masculino , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
14.
Addict Biol ; 24(1): 76-87, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29210146

RESUMEN

Alcohol consumption is considered a major risk factor for disease and mortality worldwide. In the absence of effective treatments in alcohol use disorders, it is important to find new biological targets that could modulate alcohol consumption. We tested the role of the N-terminal galanin fragment (1-15) [GAL(1-15)] in voluntary ethanol consumption in rats using the two-bottle choice paradigm as well as compare the effects of GAL(1-15) with the whole molecule of GAL. We describe for the first time that GAL(1-15), via central mechanisms, induces a strong reduction in preference and ethanol consumption in rats. These effects were significantly different than GAL. GAL receptor (GALR) 2 was involved in these effects, because the specific GALR2 antagonist M871 blocked GAL(1-15) mediated actions in preference and ethanol intake. Importantly, the mechanism of this action involves changes in GALR expression and also in immediate-early gene C-Fos and receptors-internalization-related gene Rab5 in the striatum. The relevance of the striatum as a target for GAL(1-15) was supported by the effect of GAL(1-15) on the locomotor activity of rats after ethanol administration. These results may give the basis for the development of novel therapeutics strategies using GAL(1-15) analogues for the treatment of alcohol use disorders in humans.


Asunto(s)
Consumo de Bebidas Alcohólicas , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/administración & dosificación , Galanina/farmacología , Fragmentos de Péptidos/farmacología , Animales , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Inyecciones Intraventriculares , Locomoción/efectos de los fármacos , Neostriado/metabolismo , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Receptor de Galanina Tipo 1/efectos de los fármacos , Receptor de Galanina Tipo 1/genética , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/antagonistas & inhibidores , Receptor de Galanina Tipo 2/efectos de los fármacos , Receptor de Galanina Tipo 2/genética , Receptor de Galanina Tipo 2/metabolismo , Autoadministración , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
15.
J Affect Disord ; 245: 289-296, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30419529

RESUMEN

BACKGROUND: Bipolar disorder (BD) patients experience altered emotional states and deficits in social adaptation that may also be involved in deontological moral judgments in which participants have to choose whether to sacrifice one person in order to save the lives of a greater number. METHODS: In the present study we compared the utilitarian responses of BD patients in their different states (euthymia, mania, depression) and healthy controls to moral dilemmas with low (impersonal dilemma) and high (personal dilemma) emotional saliency. RESULTS: Our findings revealed an increased tendency to utilitarian judgments in the three groups of BD patients in impersonal dilemmas relative to healthy individuals. In addition, utilitarian responses were increased during manic and depressive episodes in personal moral dilemmas relative to control group. Furthermore, we found no differences in social adaptation between utilitarian and deontological BD responders, though the depressive BD had a lower adaptation than the euthymic individuals. LIMITATIONS: The recording of response times, the exhaustive control of medication effect, or the inclusion of a non-moral condition in the battery of moral dilemmas would provide a better characterization of moral judgment in BD. CONCLUSIONS: For impersonal dilemmas, BD patients exhibited more utilitarian reasoning, which is also affected by emotional engagement for personal dilemmas during acute episodes of mania and depression. Social adaptation is not associated to utilitarian reasoning, but is rather influenced by mood state.


Asunto(s)
Trastorno Bipolar/psicología , Trastorno Ciclotímico/psicología , Trastorno Depresivo/psicología , Juicio , Principios Morales , Adulto , Emociones , Teoría Ética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Reacción
16.
Neurobiol Aging ; 75: 126-135, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30572183

RESUMEN

Treatment with dopaminergic agonists such as pramipexole (PPX) contributes to the development of impulse control disorders (ICDs) in patients with Parkinson's disease (PD). As such, animal models of abnormal impulse control in PD are needed to better study the pathophysiology of these behaviors. Thus, we investigated impulsivity and related behaviors using the 5-choice serial reaction time task, as well as FosB/ΔFosB expression, in rats with mild parkinsonism induced by viral-mediated substantia nigra overexpression of human A53T mutated α-synuclein, and following chronic PPX treatment (0.25 mg/kg/d) for 4 weeks. The bilateral loss of striatal dopamine transporters (64%) increased the premature response rate of these rats, indicating enhanced waiting impulsivity. This behavior persisted in the OFF state after the second week of PPX treatment and it was further exacerbated in the ON state throughout the treatment period. The enhanced rate of premature responses following dopaminergic denervation was positively correlated with the premature response rate following PPX treatment (both in the ON and OFF states). Moreover, the striatal dopaminergic deficit was negatively correlated with the premature response rate at all times (pretreatment, ON and OFF states) and it was positively correlated with the striatal FosB/ΔFosB expression. By contrast, PPX treatment was not associated with changes in compulsivity (perseverative responses rate). This model recapitulates some features of PD with ICD, namely the dopaminergic deficit of early PD and the impulsivity traits provoked by dopaminergic loss in association with PPX treatment, making this model a useful tool to study the pathophysiology of ICDs.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta/fisiopatología , Conducta Impulsiva/efectos de los fármacos , Enfermedad de Parkinson/fisiopatología , Pramipexol/farmacología , Animales , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/complicaciones , Ratas , Sustancia Negra/metabolismo , Sustancia Negra/fisiopatología
17.
Mov Disord ; 33(11): 1809-1813, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30423201

RESUMEN

BACKGROUND: There is a need for biomarkers of dementia in PD. OBJECTIVES: To determine if the levels of the main CSF proteins and their ratios are associated with deterioration in cognition and progression to dementia in the short to mid term. METHODS: The Parkinson's Progression Markers Initiative database was used as an exploratory cohort, and a center-based cohort was used as a replication cohort. Amyloid ß1-42, total tau, threonine-181 phosphorylated tau, and α-synuclein in the CSF and the ratios of these proteins were assessed. RESULTS: In the Parkinson's Progression Markers Initiative cohort (n = 281), the total tau/amyloid ß1-42, total tau/α-synuclein, total tau/amyloid ß1-42+α-synuclein, and amyloid ß1-42/total tau ratios were associated with a risk of progression to dementia over a 3-year follow-up. In the replication cohort (n = 40), the total tau/α-synuclein and total tau/amyloid ß1-42+α-synuclein ratios were associated with progression to dementia over a 41-month follow-up. CONCLUSION: Ratios of the main proteins found in PD patient brain inclusions that can be measured in the CSF appear to have value as short- to mid-term predictors of dementia. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Péptidos beta-Amiloides/líquido cefalorraquídeo , Trastornos del Conocimiento/líquido cefalorraquídeo , Trastornos del Conocimiento/etiología , Enfermedad de Parkinson/complicaciones , Fragmentos de Péptidos/líquido cefalorraquídeo , alfa-Sinucleína/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Curva ROC , Índice de Severidad de la Enfermedad
18.
Molecules ; 23(6)2018 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-29865267

RESUMEN

Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A⁻FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A⁻5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1⁻15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1⁻GalR2⁻5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.


Asunto(s)
Depresión/metabolismo , Núcleos del Rafe/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/metabolismo , Animales , Depresión/tratamiento farmacológico , Unión Proteica , Ratas Sprague-Dawley , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
19.
Sci Rep ; 8(1): 7337, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743514

RESUMEN

Morphine binding to opioid receptors, mainly to µ opioid receptor (MOR), induces alterations in intracellular pathways essential to the initial development of addiction. The activation of the dopamine D4 receptor (D4R), which is expressed in the caudate putamen (CPu), mainly counteracts morphine-induced alterations in several molecular networks. These involve transcription factors, adaptive changes of MOR signaling, activation of the nigrostriatal dopamine pathway and behavioural effects, underlining functional D4R/MOR interactions. To shed light on the molecular mechanisms implicated, we evaluated the transcriptome alterations following acute administration of morphine and/or PD168,077 (D4R agonist) using whole-genome microarrays and a linear regression-based differential expression analysis. The results highlight the development of a unique transcriptional signature following the co-administration of both drugs that reflects a countereffect of PD168,077 on morphine effects. A KEGG pathway enrichment analysis using GSEA identified 3 pathways enriched positively in morphine vs control and negatively in morphine + PD168,077 vs morphine (Ribosome, Complement and Coagulation Cascades, Systemic Lupus Erythematosus) and 3 pathways with the opposite enrichment pattern (Alzheimer's Disease, Neuroactive Ligand Receptor Interaction, Oxidative Phosphorilation). This work supports the massive D4R/MOR functional integration at the CPu and provides a gateway to further studies on the use of D4R drugs to modulate morphine-induced effects.


Asunto(s)
Putamen/efectos de los fármacos , Receptores de Dopamina D4/genética , Receptores Opioides mu/genética , Analgésicos Opioides/farmacología , Animales , Benzamidas/metabolismo , Benzamidas/farmacología , Núcleo Caudado/metabolismo , Agonistas de Dopamina/farmacología , Expresión Génica/efectos de los fármacos , Masculino , Morfina/metabolismo , Morfina/farmacología , Piperazinas/metabolismo , Piperazinas/farmacología , Putamen/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D4/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
20.
Front Cell Neurosci ; 12: 119, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765307

RESUMEN

Anxiety is evoked by a threatening situation and display adaptive or defensive behaviors, found similarly in animals and humans. Neuropeptide Y (NPY) Y1 receptor (NPYY1R) and Galanin (GAL) receptor 2 (GALR2) interact in several regions of the limbic system, including the amygdala. In a previous study, GALR2 enhanced NPYY1R mediated anxiolytic actions on spatiotemporal parameters in the open field and elevated plus maze, involving the formation of GALR2/NPYY1R heteroreceptor complexes in the amygdala. Moreover, the inclusion of complementary ethological parameters provides a more comprehensive profile on the anxiolytic effects of a treatment. The purpose of the current study is to evaluate the anxiolytic effects and circuit activity modifications caused by coactivation of GALR2 and NPYY1R. Ethological measurements were performed in the open field, the elevated plus-maze and the light-dark box, together with immediate early gene expression analysis within the amygdala-hypothalamus-periaqueductal gray (PAG) axis, as well as in situ proximity ligation assay (PLA) to demonstrate the formation of GALR2/NPYY1R heteroreceptor complexes. GALR2 and NPYY1R coactivation resulted in anxiolytic behaviors such as increased rearing and head-dipping, reduced stretch attend postures and freezing compared to single agonist or aCSF injection. Neuronal activity indicated by cFos expression was decreased in the dorsolateral paracapsular intercalated (ITCp-dl) subregion of the amygdala, ventromedial hypothalamic (VMH) nucleus and ventrolateral part of the periaqueductal gray (vlPAG), while increased in the perifornical nucleus of the hypothalamus (PFX) following coactivation of GALR2 and NPYY1R. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was explicitly observed in ITCp-dl, following GALR2 and NPYY1R coactivation. Besides, knockdown of GALR2 was found to reduce the density of complexes in ITCp-dl. Taken together, these results open up the possibility that the increased anxiolytic activity demonstrated upon coactivation of NPYY1R and GALR2 receptor was related to actions on the ITCp-dl. GALR2-NPYY1R heteroreceptor complexes may inhibit neuronal activity, by also modifying the neuronal networks of the hypothalamus and the PAG. These results indicate that GALR2/NPYY1R interactions in medial paracapsular intercalated amygdala can provide a novel integrative mechanism in anxiolytic behavior and the basis for the development of heterobivalent agonist drugs targeting GALR2/NPYY1R heteromers, especially in the ITCp-dl of the amygdala for the treatment of anxiety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...